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Abstract
According to one of the basic conjectures in quantum chaos, the eigenvalues
of a quantized chaotic Hamiltonian behave like the spectrum of the typical
member of the appropriate ensemble of random matrices. We study one
of the simplest examples of this phenomenon in the context of ergodic
actions of groups generated by several linear toral automorphisms—‘cat maps’.
Our numerical experiments indicate that for ‘generic’ choices of cat maps,
the unfolded consecutive spacing distribution in the irreducible components
of the Nth quantization (given by the N-dimensional Weil representation)
approaches the GOE/GSE law of random matrix theory. For certain special
‘arithmetic’ transformations, related to the Ramanujan graphs of Lubotzky,
Phillips and Sarnak, the experiments indicate that the unfolded consecutive
spacing distribution follows Poisson statistics; we provide a sharp estimate in
that direction.

PACS numbers: 05.45.Mt, 03.65.Sq

1. Introduction

Applications of random matrix theory (RMT) in physics originated in Wigner’s suggestion
in the early fifties that the resonance lines of heavy nuclei, their determination by analytic
means being intractable, might be modelled by the spectrum of a large random matrix [47].
While it was conceived of as a statistical approach to systems with many degrees of freedom,
RMT also applies to systems with few degrees of freedom with chaotic classical dynamics; in
fact, RMT lies at the heart of one of the basic conjectures in quantum chaos. Formulated by
Bohigas, Giannoni and Schmit in 1984 [8], it asserts that the eigenvalues of a quantized chaotic
Hamiltonian (after suitable unfolding) behave like the spectrum of a typical member of the
appropriate ensemble of random matrices. This conjecture complements an earlier conjecture
of Berry and Tabor [6], asserting that the eigenvalues of quantized integrable systems follow
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the Poisson distribution; the Poisson distribution is also expected for arithmetic surfaces of
constant negative curvature, following the pioneering numerical experiments in [43, 7, 10].

An important model for understanding quantization of classically chaotic systems is
afforded by symplectic maps [48]. The simplest of these are the linear area-preserving
transformations of the torus T

2 = R
2/Z

2; that is, transformations
(

x1

x2

) �→ A
(

x1

x2

)
with

A ∈ SL(2, Z). These transformations, which have received considerable attention in the
physics and mathematics literature, go by the name ‘cat maps’, which derives from the
pictures in [2] that show a cartoon cat face and its images under a few iterates of A, displaying
the chaotic features of x �→ Ax.

The quantization of such a linear transformation can be carried out by periodizing any
one of the standard quantization procedures in R

2. This has been carried out first by Hannay
and Berry in [16] and has since been studied by many authors; see [3, 5, 12, 13, 22, 25] and
references therein. We will adopt the quantization procedure given by Kurlberg and Rudnick
in [27]. It yields for each integer N � 1 (‘N = 1/h̄’) a unitary matrix UN(A) acting on
L2(Z/NZ). As we review in section 2, and as detailed in [27], UN(A) is essentially the Weil
or metaplectic representation of A reduced modulo N (first considered by Kloosterman [26]).

The behaviour of the eigenstates of UN(A) has been the subject of intensive investigations
in the papers cited above, with important recent breakthroughs by Kurlberg and Rudnick [27].
The distribution of the eigenvalues of UN(A) is degenerate, and not what is expected for
the quantization of a generic chaotic system, as shown by Keating [20]. Following an early
attempt at restoring generic statistics by Lakshminarayan and Balazs in [31], several ways of
recovering the predicted random matrix distribution for modified cat maps have been proposed.
One approach, first considered by Basilio de Matos and Ozorio de Almeido in [4], and more
recently by Keating and Mezzadri in [21], is to perturb a cat map by nonlinear shears; another,
considered by Keppeler, Marklof and Mezzadri in [23], is to couple a cat map with a two-spinor
processing in a magnetic field.

In this paper we show how to recover the RMT predictions while staying within the
framework of linear maps and representation theory. The basic idea, following [15], is to
consider the ergodic action of the group generated by several linear toral automorphisms, i.e.
‘several maps of a cat’. The ergodic theory of such actions has been actively studied in recent
years, see [38] and references therein; the classical limit can be thought of as a random walk
supported on the toral automorphisms in question, or, following Arnold and Krylov [1], as a
dynamical system with noncommutative time.

In more detail, let �A1,...,Ak
be the group generated by the transformations A1, . . . , Ak

with Ai ∈ SL(2, Z). The action of the group � is strongly ergodic if the associated element in
the group ring of SL(2, Z),

zA1,...,Ak
= A1 + A−1

1 + · · · + Ak + A−1
k (1)

has a spectral gap [44]. Let supp(z) = {A1, . . . , Ak} and �z be the group generated by
supp(z). Numerical experiments [29, 30] indicate that a ‘generic’ element z in the group ring
of SL(2, Z) has a spectral gap. In [14] it is proved that z has a spectral gap if the Hausdorff
dimension of the limit set of �z is large enough; see [45] for related results and [33, 34] for
the discussion of this problem.

We consider the quantizations Uq(z),

Uq(z) = Uq(A1) + Uq

(
A−1

1

)
+ · · · + Uq(Ak) + Uq

(
A−1

k

)
.

For technical reasons, detailed below, we restrict ourselves to primes q ≡ 1 mod 4. The
representation Uq is not irreducible but decomposes into two irreducible components U−

q and
U+

q of dimensions 1
2 (q − 1) and 1

2 (q + 1), respectively. With a suitable choice of basis, U+
q (z)
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lies in the space of real symmetric matrices, while U−
q (z) lies in the linear space of matrices

H satisfying

H ∗ = H J tHJ = Ht J =




E 0 · · · 0
0 E · · · 0
...

...
. . .

...

0 0 · · · E


 E =

(
0 1

−1 0

)
. (2)

In particular, in the latter case the eigenvalues of U−
q (z) are of the form λ1, λ2, . . . , λM where

M = (q − 1)/4 and each λj occurs with multiplicity 2.
The densities of eigenvalues are described by the sum of point masses

µ+
q(z) = 2

q + 1

(q+1)/2∑
j=1

δλj (U+
q (z)) (3)

which is a probability measure supported in [−2k, 2k] with a similar expression for U−
q (z):

µ−
q (z) = 4

q − 1

(q−1)/4∑
j=1

δλj (U
−
q (z)). (4)

It is not difficult to show [39, 42, 15] that these converge to the measure νk(t), first considered
by Kesten in [24], which is supported in the interval [−2

√
2k − 1, 2

√
2k − 1] and given by

dνk(t) =
√

2k − 1 − t2/4

2πk(1 − (t/2k)2)
dt . (5)

Our numerical experiments, described in section 4, indicate that the unfolded consecutive
spacing distribution for ‘generic’ z (see the discussion in section 4) follows the GSE law of
random matrix theory [37] for U−

q (z) and GOE law of random matrix theory for U+
q (z).

We also consider certain arithmetic, or Ramanujan elements introduced by Lubotzky,
Phillips and Sarnak [32], defined as follows. Let H(Z) denote the ring of Hamilton quaternions
α = x0 + x1i + x2j + x3k, xj ∈ Z. Let ᾱ = x0 − x1i − x2j − x3k and N(α) = αᾱ. For p � 3 a
prime number let g̃1, g̃2, . . . , g̃k be a subset of S = {α ∈ H(Z)|N(α) = p} (it is well known
[17] that S has 8(p + 1) elements) satisfying

(1) g̃j1
�= εg̃j2

for j1 �= j2 and ε ∈ {±1,±i,±j,±k} a unit
(2) g̃j1

�= εg̃j2
for any j1, j2 and ε a unit.

Among these there are p + 1 elements with x0 > 0 and odd and xj even for j = 1, 2, 3.
Assume further that p and q are unequal primes, p ≡ 1 (mod 4), q ≡ 1 (mod 4). Let i be

an integer satisfying i ≡ −1 (modq). With each element g̃ we can now associate the matrix
g in PGL2(Fq)

α → 1

N(α)

(
x0 + x1i x2 + x3i
−x2 + x3i x0 − x1i

)

giving us the corresponding elements g1, g2, . . . , gk ∈ PGL2(Fq). As detailed in [32], in the
case

(
p

q

) = 1, to which we restrict from now on, the elements gj in fact lie in PSL2(Fq). For
example, for p = 5 we obtain the following matrices:

g1 = 1√
5

(
1 + 2i 0

0 1 − 2i

)
g2 = 1√

5

(
1 2

−1 1

)
g3 = 1√

5

(
1 2i
2i 1

)
. (6)

Let zp denote the Ramanujan element; supp(zp) = {g1, g2, . . . , gk} described above
with k = 1

2 (p + 1). We find that the unfolded consecutive spacing distributions of U−
q (zp)
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and U+
q (zp) follow the Poisson distribution, in exact analogy to the arithmetic manifolds

[43, 7, 10], and to the situation discussed in [15].
One way in which the difference between RMT and the Poisson distribution manifests

itself is in the speed of convergence to the Kesten measure: the convergence is much faster in the
RMT case [41, 15]. Our numerical experiments, detailed in section 4, indicate that for a fixed
z all irreducible representations of SL2(Fq) behave in a similar way to U−

q and U+
q (depending

on parity) with respect to spacing distributions; this is consistent with the observations made in
[28–30] regarding the similarity of spectral properties of various irreducible representation of
SL2(Fq). As a result, the different behaviour with respect to the speed of convergence is also
apparent when we consider the image of z in the regular representation of SL2(Fq). This is
equivalent to considering the eigenvalues of the corresponding Cayley graphs of SL2(Fq) with
respect to the generators given by supp(z) reduced modulo q. We review the basic definitions
in section 5; see [28–30] for details.

Denote by µXq
(z) the empirical density for the Cayley graph of SL2(Fq) associated

with z. In section 5, we prove the following result for a generic element z:

Theorem 1. For q large enough

D
(
µXq(z), νk

) �z

1

log q

where k = |supp(z)|, and νk is the Kesten measure given by (5).

Here D(ν,µ) is the discrepancy between the measures ν and µ; that is, D(ν,µ) =
sup{|ν(I) − µ(I)| : I = [a, b] ⊂ R}.

In accordance with RMT predictions, supported by numerical experiments in section 4,
the discrepancy for the generic element should be O((log N)/N), where N = |Xq | = O(q3)

(see figure 3), so the result in theorem 1 is probably very far from the truth.
For Ramanujan elements zp, the spacings are Poisson and the discrepancy is not small

(see figure 3). We conclude section 5 by proving the following sharp lower bound, which is the
analogue of the lower bounds for the remainder term in Weyl’s law for arithmetic hyperbolic
surfaces, see [18, 35, 15].

Theorem 2. Fix p � 3, let Xq,p denote the Cayley graph of SL2(Fq) associated with the
Ramanujan element zp. Let k = 1

2 (p + 1). Then

D
(
µXq,p

, νk

) 
 1

q log2 q
= 1

|Xp,q | 1
3 log2 |Xp,q |

.

2. Quantum mechanics on the torus

In this section we briefly review the basics of quantum mechanics on a torus T
2 viewed as

a phase space; we follow [27], to which we refer for details. We will use abbreviations
e(z) = e2π iz and eN(z) = e(z/N). Also, in this section p and q have their usual physical
significance of momentum and position and carry no connotations of primality.

2.1. Quantum states

As the Hilbert space of states, we take distributions φ(q) on the line R which are periodic both
in position and momentum representations: φ(q + 1) = φ(q), [Fh(φ)](p + 1) = [Fh(φ)(p)],
where [Fh(φ)](p) = h−1/2

∫
φ(q)e(−pq)/h) dq . This restricts Planck’s constant h to be an
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inverse integer. With h = 1/N the Hilbert space of states HN is of dimension N and consists
of periodic point masses at the coordinates q = Q/N,Q ∈ Z. We may then identify HN with
the N-dimensional vector space L2(Z/NZ) with the inner product defined by

〈φ1, φ2〉 =
∑

Q mod N

1

N
φ1(Q)φ2(Q).

2.2. Observables

Classical observables, i.e. functions f ∈ C∞(T2), give rise to quantum observables, which
are operators OpN(f ). To define these, start with translation operators

[t1φ](Q) = φ(Q + 1)

and

[t2φ](Q) = eN(Q)φ(Q)

which may be viewed as the analogues of differentiation and multiplication operators. In fact,
in terms of the usual translation operators on the line q̂φ(q) = qφ(q) and p̂φ(q) = h

2π i
d

dq
φ(q),

they are given by t1 = e(p̂), t2 = e(q̂). In this context, the Heisenberg commutation relations
read

ta1 tb2 = tb2 ta1 eN(ab) ∀a, b ∈ Z

More generally, mixed translation operators are defined for n = (n1, n2) ∈ Z
2 by

TN(n) = eN(2−1n1n2)t
n2
2 t

n1
1

where 2−1 is the inverse of 2 in the field Fq . These are unitary operators on HN , whose action
on a wavefunction φ ∈ HN is given by

TN(n)φ(Q) = eN(2−1n1n2)eN(n2Q)φ(Q + n1).

For any smooth function f ∈ C∞(T2), define a quantum observable OpN(f ), called the
Weyl quantization of f, by

OpN(f ) =
∑
n∈Z

2

f̂ (n)TN(n)

where f̂ (n) are the Fourier coefficients of f .

2.3. Cat maps

A quantization of a smooth symplectic map A of the torus is a sequence of unitary maps
UN : HN → HN such that

U∗
NOpN(f )UN − OpN(f ◦ A) → 0 N → ∞.

The operator UN is called the quantum propagator, its iterates give the evolution of the
quantum system, and we require the quantum evolution to be asymptotic to classical evolution
as N → ∞; this is the analogue of Egorov’s theorem.

In the case of a linear maps, A ∈ SL(2, Z), one can construct a unitary operator UN(A)

which satisfies an exact version of Egorov’s theorem:

UN(A)∗OpN(f )UN(A) = OpN(f ◦ A).

As detailed in [27] and as we review in the next section this quantum propagator is
obtained by reducing A modulo N and considering the Weil representation.
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3. Weil representation of SL2(Fq)

We now restrict N to be a prime q; we remark that consideration of Weil representations of
SL(2, Z/2k

Z), k > 1, often necessary in physics, is technically more involved.
The group SL2(Fq) is generated by the matrices of the form

(
1 b

0 1

)
,

(
a 0
0 a−1

)
,

(
0 1

−1 0

)
(7)

and so it suffices to specify Uq on such matrices.
We can choose as a basis for the Weil representation the delta functions on Fq ,

δx(y) =
{

1 x = y

0 x �= y.
(8)

Using these, we get that the quantization of the generators (7) is given by matrices of the
following form. For b ∈ Fq ,

Uq

((
1 b

0 1

))
δy = e(by2/q)δy. (9)

For a ∈ Fq
×,

Uq

((
a 0
0 a−1

))
δy =

(
a

q

)
δa−1y (10)

and finally we have that

Uq

((
0 1

−1 0

))
δy(x) = ε(q)√

q
e(yx/q) (11)

so that

Uq

((
0 1

−1 0

))
δy = ε(q)√

q

∑
x

e(yx/q)δx (12)

where

ε(q) =
{

1 q ≡ 1 (mod 4)

i q ≡ 3 (mod 4).
(13)

The representation Uq is not irreducible; it decomposes into two irreducible pieces of
dimensions (q − 1)/2 and (q + 1)/2. One way to effect decomposition is the following. If we
let

F(q) = Uq

((
0 1

−1 0

))
(14)

and let S(q) = F(q)2 (so that F 4 = I and S2 = I ), then the two irreducible pieces are

U+
q = Uq(I + S(q))/2 (15)

and

U−
q = Uq(I − S(q))/2. (16)
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4. Numerical experiments

In this section we review the relevant representation theory of SL2(Fq), following the
presentation of [28], and then describe our numerical experiments, which compare the
eigenvalue density and spacing distribution of the Weil representations for generic and
Ramanujan elements.

The irreducible representations of SL2(Fq) occur in two families, the discrete series
representations and the principal series representations. The principal series representations
are obtained as induced one-dimensional representations from the upper triangular subgroup

B =
{(α b

0 α−1

)}
. More specifically, each character ψ of Fq

× is associated with an induced

representation ρψ from B to SL2(Fq). If ψ2 �= 1, then this representation is irreducible.
However, if ψ is the trivial character or its unique nontrivial square root, denoted by sgn, then
ρψ is reducible.

The U+
q component of the Weil representation can be realized as one of the two irreducible

components of ρsgn. To explain, we recall from [28] that after fixing a generator α for Fq
×, a

convenient basis for the principal series representations is given by ordering the basis elements
as eαj with j = 2, 4, q − 3, 3, . . . , 0,∞. Fixing a nontrivial additive character χ of Fq , e.g.,
χ(n) = e2π in/q , we set d∞ = e∞ and for x ∈ Fq set dx = ∑

t∈Fq
χ(xt)et . The two irreducible

pieces of ρsgn, of dimension 1
2 (q + 1), are the restrictions to the subspaces

(1) W+
sgn spanned by dβ , where β is a square, and by ε(q)d∞ + d0.

(2) W−
sgn spanned by dγ , where γ is not a square, and by ε(q)d∞ − d0.

The U+
q component of the Weil representation is the former and can be obtained by multiplying

by a suitable projection matrix.
The U−

q component of the Weil representation is realized from one of the discrete series
representations. Each discrete series representation can be associated with a nondecomposable
character of the quadratic extension L = Fq(

√
α), that is, a character having nontrivial

restriction to the set of elements C ⊂ L of norm one. The U−
q component of the Weil

representation is given in terms of the nondecomposable character ν for which ν2 is trivial on
C. In terms of the basis eαj , the two irreducible pieces of ρν , of dimension 1

2 (q − 1), are the
restrictions to subspaces

(1) V +
ν spanned by eβ where β is a square

(2) V −
ν spanned by eγ where γ is not a square.

The Weil representation component U−
q is the first one. It can be obtained by projection onto

the even-labelled basis vectors, which in this case amounts to multiplying by a matrix whose
diagonal is (0, 1, 0, 1, . . . , 0, 1).

There are several possible ways of introducing the notion of ‘generic’ or ‘random’ elements
in SL(2, Z); one is as follows: first pick an integer with Poisson distribution, then consider
a random word of length chosen in the first step in the standard generators of SL(2, Z). In
figures 1 and 2 we show the distribution of spacings between consecutive eigenvalues, where
the eigenvalues are unfolded with respect to the Kesten measure to obtain average spacings
equal to 1. This converges to GOE/GSE distributions for random generators and to the Poisson
distribution for the Ramanujan generators. Plots comparing the empirical spacing distribution
to the Wigner surmise for the appropriate ensemble are given in figure 1 for random elements
and compared to the exponential distribution in figure 2 for Ramanujan elements.

Figure 3 shows the ‘density of states’ versus the Kesten measure for random elements and
for Ramanujan (Lubotzky–Phillips–Sarnak) elements for the regular representation, together
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Figure 1. Spacing distribution for a random z with |supp(z)| = 3 versus the Wigner surmise for
the GOE (left) for the irreducible component of the Weil representation U509 coming from the
principal series representation induced from ψ1, and the spacing distribution versus the Wigner
surmise for the GSE (right) for the irreducible component of the Weil representation coming from
the discrete series representation with ν2|C = 1.
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Figure 2. Spacing distribution for the Ramanujan element z5 versus the exponential distribution
for the irreducible components of the Weil representation U509 coming from the principal series
representation induced from ψ1 (left), and from the discrete series representation with ν2|C = 1.

with the distribution at an individual irreducible representation. The plots support the analysis
presented in theorems 1 and 2, with the Ramanujan elements having larger discrepancy than
the random elements. We now turn to the proof of these results.

5. Discrepancy

5.1. Trace formula for regular graphs

We begin by reviewing the basic definitions, referring to [11, 46] for details. Let X = (V ,E)

be a k-regular graph, that is a graph with each vertex having k neighbours. The adjacency
matrix of X,A(X) is the |V | by |V | matrix, with rows and columns indexed by vertices of X,
such that the x, y entry is 1 if and only if x and y are adjacent and 0 otherwise. The spectrum
of a graph is the spectrum of its adjacency matrix.
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Figure 3. Eigenvalue density plots for empirical distributions versus the Kesten measure. The
top row shows the distribution of the full spectrum of a random 6-regular Cayley graph (left)
and the Ramanujan element z5 for SL2(F61) (right), corresponding to the spectrum of the regular
representation. The bottom row shows the distribution of the spectrum for random and Ramanujan
elements at an individual irreducible representation for SL2(F509).

Let N = |V |. A is a symmetric matrix having N real eigenvalues which we can list in the
decreasing order:

k = λ0 > λ1 � · · · � λN−1.

To state the trace formula for a regular graph we need to recall a few definitions. A path
without backtracking of length r in X is a sequence of vertices in V, x0, x1, . . . , xr , such that
xi is adjacent to xi+1 for i = 0, . . . , r − 1 and xi+1 �= xi−1 for i = 1, . . . , r − 1. The origin
of the path is x0, and the extremity is xr . For x ∈ V , denote by fl,x the number of paths of
length l in X without backtracking, with origin and extremity in x.

We are now ready to state the trace formula for k-regular graphs (which can be viewed as
a discrete analogue of Selberg’s trace formula [18]). For every m ∈ N we have

∑
x∈V

∑
0�r� m

2

fm−2r,x = (k − 1)
m
2

N−1∑
j=0

Um

(
λj

2
√

k − 1

)
. (17)

Here Um(x) are Chebyshev polynomials of the second kind defined as follows:

Um(cos θ) = sin(m + 1)θ

sin θ
(m ∈ N). (18)
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We say that X is vertex-transitive if the group of automorphisms of X acts transitively on
the vertex set V . Under this assumption, the number fl,x does not depend on the vertex x
and we denote it simply by fl . For vertex-transitive k-regular graphs on N vertices, the trace
formula (17) takes the form

∑
0�r� m

2

fm−2r = 1

N
(k − 1)

m
2

N−1∑
j=0

Um

(
λj

2
√

k − 1

)
. (19)

5.2. Proof of theorem 1

Basic examples of vertex-transitive graphs are afforded by Cayley graphs. The Cayley graph
for a group G with a generating set S, with S = S−1, is the undirected graph with vertex set
equal to G, such that there is an edge between a and b in X if and only if as = b for some
(necessarily unique) s ∈ S.

Now let Gq = SL2(Fq),N = |SL2(Fq)| = q(q2 − 1). Let φq be the homomorphism
of SL(2, Z) onto SL2(Fq) which associates with each matrix B ∈ SL(2, Z) the matrix
φq(B), obtained by reducing each element of X modulo q. Let z be a generic element, let
S(z) = supp(z) = {A1, . . . , Ak}, let Sq(z) = φq(S(z)) and consider the sequence of 2k-regular
graphs Cayley graphs of Gq with respect to the generators Sq(z),Xq(z) = X(Gq, Sq (z)).

Proceeding exactly as in section 2 of [14] we obtain that for q large enough 〈Sq(z)〉 =
SL2(Fq) and that, furthermore, the girth of Xq(z), that is the length of its shortest circuit,
satisfies the following estimate:

girth(Xq(z)) � 2 logα(z)

(q

2

)
− 1 (20)

where

α(z) = max
L∈ supp(z)

‖L‖.
Here the norm of a matrix L is defined by

‖L‖ = sup
x �=0

‖Lx‖
‖x‖

and the norm of x = (x1, x2) is given by ‖x‖ =
√

x2
1 + x2

2 .
By theorem 1.1 of McKay [36], the bound on girth (20) implies the convergence to Kesten

measure.
Now let

F(Xq(z), t) =
∫ t

−2
√

2k−1
µXq(z)(x) dx

and

F2k(t) =
∫ t

−2
√

2k−1
ν2k(x) dx.

By theorem 4.4 of McKay [36], for every t we have

|F(Xq(z), t) − F2k(t)| <
24e

√
2k − 1

π2(girth(Xq(z)) + 2)
.

This estimate, combined with the bound (20), completes the proof of theorem 1.
We remark that numerical experiments in [19] indicate that the spacing distribution of

eigenvalues of random regular graphs follows GOE distribution. Since random regular graphs
asymptotically have logarithmic girth [9], the argument outlined above also applies to give
similar discrepancy bound for the spectrum of random regular graphs.
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5.3. Proof of theorem 2

We now consider Ramanujan elements zp; the associated Cayley graphs Xq,p =
X(Gq, Sq(zp)) are precisely the Ramanujan graphs considered in [32]. As shown in that paper,
except for λ0 = 2k = p + 1, all the eigenvalues λj,N of Xp,q lie in the interval [−2

√
p, 2

√
p].

The graphs Xq,p also satisfy the following sharp girth bound when
(

p

q

) = 1 (the case to which
we restrict ourselves):

girth(Xp,q) � 2 logp q. (21)

Our aim is to show that D
(
µXq,p

, νp+1
)

is large.
One checks easily that the discrepancy is invariant under continuous monotone changes

of variable in the eigenvalue parameter [15]. Since λj,N ∈ [−2
√

p, 2
√

p] it is convenient to
use the variable θj,N ∈ [0, π], where

2
√

p cos θj,N = λj,N 1 � j � N − 1.

Set

µ̃Xq,p
= 1

N − 1

N−1∑
j=1

δcos θj,N
(22)

which is a probability measure on [−1, 1]. Let ν̃p+1 be the corresponding limit of the µ̃Xq,p
as

q → ∞. Let

In,q =
∫ 1

−1

sin(n + 1)t

sin t
dµ̃Xq,p

(t). (23)

Now since for n > 1∫ 1

−1

sin(n + 1)t

sin t
dν̃p+1(t) = 0 (24)

integration by parts in (23) yields

|In,q | � 2n2D
(
µ̃Xq,p

, ν̃p+1
)
. (25)

We will use (25) to give a lower bound for D
(
µ̃Xq,p

, ν̃p+1
)
.

To this end, we consider the trace formula (19) applied to the Ramanujan graphs Xq,p.
Recalling the definition of Chebyshev polynomials (18), we obtain

In,q = p− n
2


 ∑

0�r� n
2

fn−2r − p
n
2

N
Un

(
λ0

2
√

p

)
 . (26)

An easy computation shows that

Un

(
λ0

2
√

p

)
= Un

(
p + 1

2
√

p

)
= p− n

2
pn+1 − 1

p − 1
. (27)

As detailed in [32], for graphs Xq,p the left-hand side of (19) has the following arithmetic
interpretation: ∑

0�r� m
2

fm−2r,x = sQ(pm) (28)

where sQ(pm) is the number of integral representations of pm by the quadratic form Q in four
variables, defined by

Q(x0, x1, x2, x3) = x2
0 + 4q2 (

x2
1 + x2

2 + x2
3

)
.
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The optimal estimate for sQ(pn) is obtained by appealing to Ramanujan bounds proved
by Eichler and Igusa (see [40]); the following bound, which suffices for our purposes, can be
obtained by elementary means (see [11]):

sQ(pn) = Oε

(
pn(1+ε)

q3
+

pn/2(1+2ε)

q

)
. (29)

Combining (26), (27), (28) and (29) and recalling that N = |SL2(Fq)| = q(q2 − 1), we
have

In,q = p
−n
2

(
Oε

(
p(n+ε)

q3
+

p
n
2 (1+2ε)

q

)
− 1

q(q2 − 1)

pn+1 − 1

p − 1

)
. (30)

Now keeping in mind the girth bound (21), we choose n such that

2 logp q < n < 4 logp q. (31)

Substituting this choice of n into (30) and combining it with (25) completes the proof of
theorem 2.
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